

Modernization of two cycles (MA, BA) of competence-based curricula in Material Engineering according to the best experience of Bologna Process

An introduction to the possibilities of Materials Selection.

Prof Dr ir Jan Ivens Jan.ivens@kuleuven.be

Content

- Introduction
- The steps in materials selection
- Example: the underbody plate of a car

The Materials Library

Dependence on Non-renewable Materials

4

Tempus

A light car

A cheap car

An environmentally friendly car

The design process

Steps

Tempus

Brainstorm

- Gather:
 - What is the purpose of the component? \rightarrow function?
 - What can all play a role in the materials selection?
 - No restrictions
- Assess: what is important? What is not?
 - Need to have: primary elements
 - Nice to have: secondary
 - o Others
- What is our design focus (goal)?

Translation

Table 5.1 Function, Constraints, Objectives, and Free Variables					
Function Constraints*	What does t What nonne What negoti	does the component do? nonnegotiable conditions must be met? negotiable but desirate conditions must be met?			
Objectives Free variable	What is to I Which para	e maximized o eters of the p	minimized? blem is the designer free to change?		
* It is sometimes useful to disting. h betw might be absolute requirements (i rd coi		h between "hard rd constraints);	and "soft" constraints. Stiffness and strength st might be negotiable (soft constraint).		
		rai	screening		

Our car: function

 Minimise weight/cost/environmental impact of bottom plate of car

MATENG Objective 1: minimize mass

COMMATENG Objective 2: minimize material

MATENG Constraint 1

=> Limited elastic deformation

=> No plastic deformation or failure

=> No brittle fracture

 $K_{Ic} \ge K = Y\sigma\sqrt{\pi a}$

Maximum = yield strength

Determined by defect detection limit

Simplest case:

Design with one objective, meeting a single constraint

Free variable(s)

- L & w are determined by car dimensions
- => constants
- t (thickness of bottom plate) can be varied
- => free variable

Case 1 A light car – stiffness constraint

- Eliminate the free variable by combining objective and constraint function
- $\mathbf{m} = \mathbf{p} \times \mathbf{L} \times \mathbf{w} \times \mathbf{t}$

$$S = \frac{F}{\delta} \ge C_1 \frac{E \cdot I}{L^3}$$
$$I = \frac{w t^3}{12}$$

$$m \leq L^{2} \sqrt[3]{\frac{12w^{2}}{C_{1}}} \int_{\delta}^{F} \int_{\delta}^{\rho} \frac{\rho}{\sqrt[3]{E}}$$

Geometry Material Properties

Material Index MI

$MI = \frac{\rho}{\sqrt[3]{E}} \min$ $Log(E)-3log(\rho) = 3log(MI')$ $Log(E) = 3log(\rho) + 3log(MI')$ $MI' = \frac{\sqrt[3]{E}}{\max}$ Y = mX + QSlope = 3

List of Materials Passing

Name	Stage 1: Index
Balsa (ochroma spp.) (0.09-0.11) (l)	0.0132
Balsa (ochroma spp.) (0.12-0.14) (l)	0.0112
PVC cross-linked foam (rigid, closed cell, DH 0.030)	0.0104
PVC cross-linked foam (rigid, closed cell, KR 0.030)	0.00906
Balsa (ochroma spp.) (0.17-0.21) (l)	0.00885
PS foam (closed cell, 0.020)	0.00852
PVC cross-linked foam (rigid, closed cell, DH 0.045)	0.00785
PS foam (closed cell, 0.025)	0.00774
Polymethacrylimide foam (rigid, 0.051)	0.00765
PVC cross-linked foam (rigid, closed cell, KR 0.040)	0.00764
Balsa (l) (ld)	0.00744
PVC cross-linked foam (rigid, closed cell, AC 0.040)	0.00743
Glass foam (0.13)	0.00718
PVC cross-linked foam (rigid, closed cell, KR 0.045)	0.00706
Carbon foam (reticulated, vitreous)(0.05)	0.00705
PS foam (closed cell, 0.030)	0.00703
Styrene acrylonitrile foam (closed cell, 0.055)	0.00675

Case 2 A cheap car – strength constraint

• Eliminate the free variable by combining objective and constraint function

$$C = C_{m} \cdot \rho \cdot L \cdot w \cdot t$$

$$C \leq \sqrt{C' \cdot w \cdot L^{3}} \quad \int C_{m} \rho \cdot \frac{C_{m} \rho}{\sqrt{\sigma_{f}}}$$

$$\sigma_{f} \geq C' \frac{FL}{wt^{2}} \quad Geometry \quad Material Properties$$

Material Index

$Log(\sigma_f)-2log(C_m\rho) = 2log(MI)$

$Log(\sigma_f) = 2log(C_m\rho) + 2log(MI)$

Y = mX + Q

EXAMPLENG List of materials passing

Name	Stage 2: Index
Aerated concrete	0,029
Hardboard (tempered), perpendicular to board	0,0242
Hardboard (standard), perpendicular to board	0,0216
Concrete (structural lightweight)	0,0216
Redwood (sequoia sempervirens (young)) (l)	0,0215
Hardboard (tempered), parallel to board	0,0214
Fir (abies procera) (l)	0,0206
Spruce (picea rubens) (l)	0,0198
Oak (quercus falcata var. pagodifolia) (I)	0,0197
Spruce (picea abies) (I)	0,0191
Fiberboard, hard, perpendicular to board	0,0191
Plywood (3 ply, beech), parallel to face layer	0,019
Plywood (5 ply, beech), parallel to face layer	0,019
Plywood (7 ply, beech), parallel to face layer	0,019
Fiberboard, extra hard, perpendicular to board	0,0188
Pine (pinus spp.) (l)	0,0185
Douglas fir (pseudotsuga menziesii (northern)) (I)	0,0182
Larch (larix decidua) (l)	0,0177
Concrete (super sulfate cement)	0,0169

WOOD and CONCRETE

Case 3 A cheap car – no brittle fracture

• Eliminate the free variable by combining objective and constraint function

$$C = C_{m} \cdot \rho \cdot L \cdot w \cdot t$$

$$K_{Ic} \ge Y \sigma \sqrt{\pi a}$$

$$C \le \sqrt{YC' \cdot w \cdot L^{3} \sqrt{\pi a}} \cdot \sqrt{F} \cdot \frac{C_{m} \rho}{\sqrt{K_{Ic}}}$$

$$\sigma = C' \frac{FL}{wt^{2}}$$
Geometry Material Properties

Material Index

$Log(K_{lc})-2log(C_{m}\rho) = 2log(MI)$

$Log(K_{lc}) = 2log(C_m \rho) + 2log(MI)$

$$Y = mX + Q$$

Slope = 2

EXAMPLENG List of materials passing

Name	Stage 2: Index
Aerated concrete	0,029
Hardboard (standard), perpendicular to board	0,0216
Redwood (sequoia sempervirens (young)) (I)	0,0215
Fir (abies procera) (l)	0,0206
Spruce (picea rubens) (l)	0,0198
Oak (quercus falcata var. pagodifolia) (I)	0,0197
Spruce (picea abies) (I)	0,0191
Pine (pinus spp.) (I)	0,0185
Larch (larix decidua) (l)	0,0177
Concrete (super sulfate cement)	0,0169
Wood chipboard, type C1, parallel to board	0,0167
Wood chipboard, type C1A, parallel to board	0,0159
Wood chipboard, type C3, parallel to board	0,0158
Gypsum bonded particleboard, parallel to board	0,0156
Wood chipboard, type C1, perpendicular to board	0,0152
Wood chipboard, type C1A, perpendicular to board	0,0145
Wood chipboard, type C3, perpendicular to board	0,0144
Palm (0.35)	0,0142
Gypsum bonded particleboard, perpendicular to board	0,0142

Tempus

WOOD

Light car stiff and strong

- Function:
- Constraints:

underbody panel

- L and w known must not deform too much must not yield or break
- Objective: minimal mass

 $m = \rho \cdot L \cdot w \cdot t$

• Free variables panel thickness t choice of material

Performance metrics

Coupling constant

Conflicting objectives

- Function:
- Constraints:

Objective:

underbody panel

- L and w known must not deform too much
- minimal mass minimal thickness

 $m = \rho \cdot L \cdot w \cdot t$

• Free variables panel thickness t choice of material

Performance metrics

Conflicting objectives

- Function:
- Constraints:
- underbody panel S =L and w known must not deform too much
- E at least 5 GPa

- Objective:
- minimal mass minimal material cost

$$m = \rho \cdot L \cdot w \cdot t$$

St
$$C = C_m \cdot \rho \cdot L \cdot w \cdot t$$

• Free variables panel thickness t choice of material

Performance metrics

CHEAP CAR LIGHT CAR

Exchange constants

(Upper bounds to) Exchange constants for mass saving in transport systems

Transport System: mass saving	α (€per kg)
Family car (based on fuel saving)	0.5 ~ 5
Truck (based on payload)	5 to 20
Civil aircraft (based on payload)	100 to 500
Military aircraft (performance payload)	500 to 1000
Space vehicle (based on payload)	3000 to 10000

The ultimate

- Function: underbody panel
- Constraints:
- L and w known must not deform too much E at least 5 GPa must not plastically deform or fail must not have brittle failure must resist to water
- Objective: minimal mass minimal material cost minimal embodied energy
- Free variables panel thickness t choice of material

The objectives

- minimal mass $m = \rho \cdot L \cdot w \cdot t$
- minimal material cost $C = C_m \cdot \rho \cdot L \cdot w \cdot t$
- minimal embodied energy $H = H_m \cdot \rho \cdot L \cdot w \cdot t$

The constraints

- Screening constraints E at least 5 GPa must resist to water
- Ranking constraints must not deform too much

must not plastically deform or fail

must not have brittle failure

 $S \ge C_1 \frac{Ewt^3}{12L^3}$ $\sigma_f \ge C \frac{6FL}{wt^2}$ $K_{Ic} \ge Y \sigma \sqrt{\pi a}$

MMATENG Material index

Objective	Constraint	Material index Mi
Minimum mass	Stiffness	$\rho/_{\sqrt[3]{E}}$
Minimum mass	Strength	$\rho/\sqrt{\sigma_v}$
Minimum mass	Toughness	$\rho/\sqrt{K_{Ic}}$
Minimum cost	Stiffness	$C_m \rho / \sqrt[3]{E}$
Minimum cost	Strength	$C_m \rho / \sqrt{\sigma_y}$
Minimum cost	Toughness	$C_m \rho / \sqrt{K_{Ic}}$
Minimum energy	Stiffness	$H_m \rho / \sqrt{\frac{3}{E}}$
Minimum energy	Strength	$H_m \rho / \sqrt{\sigma_v}$
Minimum energy	Toughness	$H_m \rho / \sqrt{K_{Ic}}$

Penalty functions

 $Z = \prod M_i^{\alpha_i}$ i

 $Z = \sum_{i} \alpha_{i} \frac{M_{i}}{M_{i,\max}}$

	Stage 1:	Stage 2:	Stage 3:				
Name	Index	Index	Index	Mi/Mmax	Mi/Mmax	Mi/Mmax	SUM
Polyester/E-glass fiber, pultruded							
composite rod, unidirectional laminate	0,00171	0,00998	0,00265	1,00	1,00	1,00	20,00
Polyester/45wt% E-glass fiber, woven							
fabric composite, biaxial laminate	0,00162	0,00601	0,00207	0,95	0,60	0,78	14,87
Polyester/E-glass fiber, non-crimp							
fabric composite, quasi-isotropic							
laminate	0,00153	0,00557	0,00185	0,89	0,56	0,70	13,57
Aluminum, 7475, wrought, T651	0,00149	0,00443	0,00133	0,87	0,44	0,50	10,74
Aluminum, 7475, wrought, T7651	0,00149	0,00416	0,00136	0,87	0,42	0,51	10,66
Aluminum, 5182, wrought, H19	0,00155	0,00434	0,00126	0,91	0,43	0,48	10,52
Aluminum, 6010, wrought, T6	0,00152	0,00415	0,00125	0,89	0,42	0,47	10,29
Aluminum, 7475, wrought, T761	0,00148	0,00405	0,00122	0,87	0,41	0,46	10,04
							weight
max	0,00171	0,00998	0,00265	3	7	10	factor

B

TEXTBOOKS

Michael F. Ashby Materials Selection in Mechanical Design

Fourth Edition

CES EDUPACK 2014 - GrantaDesign

http://www.grantadesign.com/education/edupack/edupack2014.htm

